

Company Overview & Capability

2024

CONTACTS DASH CAE

Ashley Robathan – Managing Director (<u>Ash@dash-cae.co.uk</u>) Tim Robathan – Founder & CTO (<u>Tim@dash-cae.co.uk</u>) Ryan Muller – Sales Director (<u>Ryan@dash-cae.co.uk</u>) Nicholas Shotton-Gale – Chief Engineer (<u>Nick@dash-cae.co.uk</u>) Alan Bevington – Quality Manager (<u>QA@dash-cae.co.uk</u>)

MAIN COMPANY CONTACTS

COMPANY HISTORY & OVERVIEW

"Where we came from and where we are now"

HISTORY & MILESTONE DATES

- 2006

Dash is founded on the 26th October and primarily supports the F1 industry with design & analysis simulation

2006-2012

Capacity for F1 part manufacturing increases with the kick-off of a full F1 homologated F1 Chassis delivered in 3.5 months. Complete design and analysis carried out by Dash.

2012-2018

Automotive supercar/hypercar contracts are won, increasing the amount of repeat business and significantly aiding staff retention. Business growth greatly accelerated. Dash also, becomes involved with aerospace tooling, Moto GP & LMP component manufacture 2018-2020

Dash strategically undergoes factory expansion and explores large scale 3D printing through partnership with CEAD unlocking tool and part printing up to 3m x 2m x 2m. Total staff now exceeds 60 direct & indirect employees

2020-2024

TR01 monocoque is designed, tooled and manufactured in-house. Contracts are won to supply niche vehicle hypercar programs alongside low volume GT3 projects and ground up EV sportscar.

Marine projects are won using large format recyclable 3D printing technology alongside repeat aerospace component manufacture

COMPANY ORGANISATION

Dash is a relatively large SME in the composites industry with excellent capacity for large projects.

With room to expand in the form of a mezzanine, our facility is perfect for large run automotive projects with storage capability

With 3 Autoclaves, over 1,000 components a month is possible from our production facility.

Situated in Oxfordshire with great transport links for fast delivery to our customers

DASH IS AN ADVANCED ENGINEERING

COMPANY WITH ONE-STOP CAPABILITIES

TO PROVIDE RAPID RESPONSE FOR HIGH-END VEHICLE PROJECTS

Dash also provides design and engineering services for automotive (Including full system integration), aerospace and marine programs including production planning, Product Lifecycle Management, Bill of Materials management alongside stringent quality assurance.

Alongside composite laminating, Dash also prides itself in innovative tooling technologies such as 3D printing (small and large scale for parts and fixtures) alongside 30+ years in Chassis, suspension and general composites laminate design.

MANUFACTURING COMPETENCE

Customer Approved Images & Manufacturing Capability

2x CNC Large Bed Kit Cutting Machines

3x Autoclaves (Largest 1.65m Dia x 4m)

30+ Laminators Using State of The Art 3D Printing Mould Technology

3x Automated CNC Trimming Robots

Creaform Handyscan Black Scanning Technology

Matched Herringbone Clear Carbon Part Capability To The Highest Customer Standards

INNOVATION AND R&D

What Makes Us Different To Other Tier 1 Composite Suppliers?

3m x 2m x 2m Build Envelope

CF Printed Inserts & Brackets Possible

Post Machining For Smooth Finishing

The DASH CAE TR01 CHASSIS

Ultra High Stiffness

35kNm/degree of torsional stiffness suitable for both hard and open top configurations without compromised performance

Completely In-House Developed

Dash CAE has full FEA capability in-house to model static and dynamic linear/nonlinear simulations. The TR01 is designed, engineered & manufactured completely inhouse

Light Weight

The Dash TR01 has a mass of 48kg without front and rear crash structures

Complete Turn-key Project Management

Full program management can be offered with the addition of wiring loom, powertrain, suspension and body

TR01 Packaging Dimensions

Basic dimensions of the TR01 are **1784mm x 1350mm x 500mm** without front and rear crash structures attached. The design was envisaged for a 2 seater mid engine sports car and is packaged to seat two 95th percentile Canadian manikins.

Blue Light Scanning Capability

ENGINEERING & ANALYSIS

Full vehicle integration support and analysis

Jash

Engineering & Laminate Design

Using CATIA V5, Laminate Tools, Nastran, Fusion 360 and Ansys, Dash has the capability to both design laminates and inserts for composite components. These drawings ensure our skilled staff have all the correct information to hand to make parts right first time, every time.

View showing Insert 58 7:20

100

(38.29) - 15 x 45 Typ.

Laminate accord

68 1187-01-1020-01 KRM Bolting Brit Sides 64 1127-01-1021-01 Kens Bolting Brit Red 65 1127-01-1022-01 Insert Engine Shear #1 66 1127-01-1022-01 Insert Engine Shear #1 67 1127-01-1020-01 Insert Engine Shear #3 68 1127-01-1020-01 Insert Engine Shear #3

Product Description Chassis Top Moulding Chassis Botton Moulding

Engime Wt Insert WId Engine Wt Insert Wid R Engine Wt Insert Lwr Engine Wt Insert Lwr Chassis Insert Stg Rac

Chessis_Suspension_Bulkhead_H Rocker_Bulkhead_Fed Chassis_Insert_Ftwb_Fwd_LH

Chassis_Insert_Flab_Fwd_RH Chassis_Insert_BlosCas_Lows Chassis_Insert NoseCas_Lows Insert FURD FWD Posn_LH Insert KIRS Gooling Inlat Insert Loom_Exit_RH Insert_Loom_Exit_RH Chassis_Insert_Beatbelt_Fwd Chassis_Insert_Blogsest_Flab

Ckpt Sd Roha RR LH Ckpt Sd Carb Insrt1 L Ckpt Sd Carb Insrt2 L

Ckpt Sd Carl

Ckpt Sd Carl

Carbon_insert_secondary_roll_hoop Chassis Insert #8

Insert KERS cooling cutlet Rohacell - Cockpit RR

Product Descriptio

Intensifier_Chassis_Pedal_Are Intensifier_Stg_Brkt_Ctr. Intensifier_Top_Tether_Brkt_I Intensifier_Top_Tether_Brkt_I

Bill	of	Material:	RollHoop	Insert

112E-01-1115-00

Intensifiers Kors#tg Inser

art Number

112F-01-

Number	Part Number	Product Description	Quantity
68	112F-01-1131-01	Rohacell_roll_heep_rr_lh	1
69	112F-01-1129-01	Carbon_insert_rell_hoop_rr-LH	1
70	112F-01-1127-01	Rohacell_roll_hcop_mid2-LH	1
71	112F-01-1125-01	Carbon insert roll hoop mid2-LH	1
72	112F-01-1123-01	Rohacell roll heep mid1-LH	1
73	112F-01-1121-01	Carbon_insert_rell_hoop_mid1-LH	- ¹
74	112F-01-1119-01	Rohacell_roll_hcop_fwd-lh	
75	112F-01-1104-01	carbon insert roll hoop fed	
76	112F-01-1132-01		
77	112F-01-1130-01		
78	1127-01-1126-01		
79	112F-01-1124-01		
80	112F-01-1122-01		
81	112F-01-1120-01		

Engineering & Laminate Design

Assembly drawings & BOM management managed in our state of the art MRP system

Dassault CATIA V5 is used by our design engineers to model and create complex drawings Complex surfacing capability alongside generation of aero surfaces for automotive and motorsport projects

Full plybook generation capability using Anaglyph laminate tools for accurate kits with zero manual intervention

Start ENOVIA V5 VPM File Edit View Insert Tools Analyze Window

Automa 🗸 Auto 🔽 Auto 🔽 Auto 🔽 Aut 🔽 Aut 🔽 None 🔍 💕 🕺 🌆 🕫 8 🔳 🖷 🖓 🖗 🐉 🚽 🎆 🍪 🎉 🥞 🕅 🎼 🗍 🙏 🕮 🖓 🆓 🖓

02

Kinematics & Finite Element Analysis

Automotive and motorsport projects be supported with both composite part design and manufacture, alongside suspension/chassis kinematics and simulation.

-

KINEMATICS & FEA SIMULATION

CFD Simulation for automotive and motorsport projects to improve performance

er, has very little expansion before it ves up to blend to the bumper

Updated diffuser generally remains more attached at this condition

Linear static and non-linear dynamic simulation possible through Fusion 360 and Ansys

without sub-suppliers

analysis in CATIA V5 for structures including exterior

EXAMPLE ANALYSIS REPORT FROM EV PROJECT

PARAMETER	UNITS	VALUE
Total Loading Applied	Ν	10,000
Distance of Loading From Neutral Axis	m	0.61
Total Torque Applied	Nm	6,100
Deflection at RR Bulkhead Probe Point	mm	2.018
Degrees of Rotation	Deg	0.18955
Chassis Torsional Rigidity	Nm/Deg	32,181
Chassis Mass as Tested	kg	70

Suspension Design, Manufacture & Full Vehicle Integration

With our extensive supply chain and partners, full vehicle programs can be supported allowing us to supply engines, gearboxes, suspension, brakes and even ECU/wiring harnesses.

03

Reverse Engineering

04

Our Creaform Handyscan Black scanners allow for quick and precise scanning of existing components. Combined with our in-house design team, Dash has the capability to quickly and efficiently reverse engineer and recreate historically heavy or obsolete components and improve performance.

QUICK & PRECISE REVERSE SCANNING

IN-HOUSE SCAN MESHING AND ENGINEERING

ALL EXISTING COMPONENT MATERIALS CAN BE SCANNED INCLUDING GLASS

Complex Mechanical Systems

CATIA V5 designed brake cooling ducts and suspension uprights designed, tooled and laminated in weeks using innovative in-house manufacturing methods.

05

06 Wind Tunnel Models

and the second second second

Extensive range of 3D printers including Stratasys Fortus (FDM), SLA and our innovative robot additive manufacturing allows for accurate and large scale models for physical wind tunnel testing.

	And in case of the second s	
Tile A	Energy : 10.95 kJ	Share : 29.02
Peak Load : 68.16 kN	Time : 39.70 ms	3ms Cli-
Tile B	Energy : 6.420 k	
Peak Load : 42.17 kN	Time	
Tile C		

Homologation & Physical Crash Testing

We have close connections to local testing houses validating our FEA analyses. This includes testing to meet industry standard accreditations such as Euro NCAP and IIHS safety standards.

PHYSICAL CRASH TESTING

Physical side impact testing at various test standards including for the FIA, Euro NCAP & IIHS

Mechanical systems analysis including dynamic pressure simulation can be carried out in-house and iterated quickly without sub-suppliers

Side squeeze test and roll hoop impact testing using calibrated test equipment and rigs

In-house design of sub-structures, crash boxes and brake ducts which have undergone physical testing both for aero and crash compliance

For Any Sales Enquiries Please Contact

Sales@dash-cae.co.uk

